Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.361
Filtrar
1.
Shanghai Kou Qiang Yi Xue ; 33(1): 13-21, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38583019

RESUMO

PURPOSE: To clarify the effect of genistein(GEN) on osteogenic differentiation and explore the effect of GEN loaded by platelet-rich fibrin (PRF) on the repair process of bone defects in obese mice. METHODS: In in vitro experiments, the effect of GEN(0, 0.1, 1, 10, 50 µmol/L) on the proliferation of mouse embryonic osteoblast precursor cells (MC3T3-E1) was determined by CCK 8. Alkaline phosphatase(ALP) staining and quantitative detection of ALP activity were performed to determine the changes of ALP activity in cells; RNA and protein expression levels of ALP, osteopontin (OPN) and osteocalcin (OCN) were detected by quantitative real-time PCR(qRT-PCR) and Western blot. Alizarin red staining was used to define the effect of GEN on mineralization of MC3T3-E1. To verify the feasibility of the PRF drug loading, the ultrastructure of PRF was subsequently observed under SEM. In in vivo experiments, obese C57 mouse models were established by high-fat diet feeding. On this basis, skull defect models with a diameter of 2.8 mm were established, and the prepared GEN/PRF complexes were placed into the bone defect area. The effects of GEN on skull defect repair in obese mice were evaluated by Micro-CT scanning and hematoxylin-eosin(H-E) staining. Statistical analysis was performed with GraphPad Prism 5.0 software package. RESULTS: CCK 8 results showed that 0.1, 1 µmol/L GEN promoted cell proliferation within 7 days(P<0.05); 10 µmol/L GEN had no significant effect on the process of cell proliferation. From the second day, 50 µmol/L GEN significantly inhibited cell growth and showed cytotoxicity(P<0.05). These two concentrations had similar effects in promoting cellular osteogenic differentiation. SEM results showed that PRF presented a 3-dimensional network structure, providing space for loading drug molecules. In in vivo experiments, the body weight of mice in the high-fat diet (HFD) group was 27.7% greater than that in the normal diet group(P<0.05) and had abnormal glucose tolerance (P<0.05). Micro-CT showed that compared with the normal diet group, the number of bone trabeculae in the femur of obese mice was decreased(P<0.05), the distance between bone trabeculae was widened(P<0.05), and the bone density was decreased (P<0.05). In addition, GEN (0.1, 1.0 µmol/L) loaded by PRF increased bone volume fraction in the skull of obese mice (P<0.05). H-E results showed that GEN/PRF promoted the healing of the bone defects. CONCLUSIONS: GEN promotes osteogenic differentiation of MC3T3-E1, and it can effectively accelerate the healing of cranial bone defects after loading with PRF in obese mice.


Assuntos
Osteogênese , Fibrina Rica em Plaquetas , Animais , Camundongos , Osteogênese/genética , Genisteína/farmacologia , Camundongos Obesos , Sincalida/farmacologia , Diferenciação Celular/genética , Osteoblastos
2.
J Orthop Surg Res ; 19(1): 198, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528538

RESUMO

PURPOSE: This study aimed to evaluate the protective effects of gentiopicroside against lipopolysaccharide-induced chondrocyte inflammation. METHODS: SW 1353 chondrosarcoma cells were stimulated with LPS (5 µg/ml) for 24 h and treated with different concentrations of gentiopicroside (GPS) for 24 h. The toxic effects of GPS on chondrocytes were determined using a CCK-8 assay and EdU staining. Western blotting, qPCR, and immunofluorescence analysis were used to examine the protective effect of GPS against the inflammatory response in chondrocytes induced by lipopolysaccharide (LPS). One-way ANOVA was used to compare the differences between the groups (significance level of 0.05). RESULTS: The CCK-8 results showed that 10, 20 and 40 µM GPS had no significant toxic effects on chondrocytes; GPS effectively reduced the production of IL-1ß and PGE2, reversed LPS-induced extracellular matrix degradation in cartilage by inhibiting the Stat3/Runx2 signaling pathway, and suppressed the hypertrophic transformation of SW 1353 chondrosarcoma cells. CONCLUSION: Our study demonstrated that GPS significantly inhibited the LPS-induced inflammatory response and hypertrophic cellular degeneration in SW 1353 chondrosarcoma cells and is a valuable traditional Chinese medicine for the treatment of knee osteoarthritis.


Assuntos
Condrossarcoma , Glucosídeos Iridoides , Osteoartrite , Humanos , Condrócitos/metabolismo , Lipopolissacarídeos/toxicidade , Osteoartrite/metabolismo , Sincalida/metabolismo , Sincalida/farmacologia , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Hipertrofia , Condrossarcoma/tratamento farmacológico , Interleucina-1beta/metabolismo , NF-kappa B/metabolismo
3.
Int Immunopharmacol ; 129: 111629, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38346377

RESUMO

BACKGROUND: As a common chronic musculoskeletal condition, osteoarthritis (OA) presently lacks particular treatment strategies. The aim of this study was to examine how AT-III therapies affected macrophage repolarity in order to slow down the advancement of OA. METHODS: RAW264.7 macrophages were polarized to M1 subtypes then administered with different concentrations of AT-III. Immunofluorescence, qRT-PCR and flow cytometry were used to assess the polarization of the macrophages. The mechanism of AT-III repolarize macrophages was evaluated by western blot. Furthermore, the effects of macrophage conditioned media (CM) on the migration, proliferation, and chondrogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) were investigated using CCK-8 assays, the scratch test, and alcian blue staining. The effects of macrophage CM on chondrocyte proliferation and degeneration were investigated using CCK-8 and qRT-PCR. In vivo micro-CT and histological observations were performed on rats with anterior cruciate ligament transection and partial medial meniscectomy, either with or without AT-III treatment. RESULTS: AT-III repolarized M1 macrophages to M2 phenotype. Mechanistically, AT-III reduced the expression of Toll-like receptor(TLR) 4 induced by lipopolysaccharide in RAW264.7 and lowered nuclear factor-κB (NF-κB) signaling molecules p-p65 and p-IκBα. The TLR4 agonist RS09 reversed the effects of AT-III on macrophage repolarization. AT-III-induced macrophages CM stimulated BMSCs migration, proliferation and chondrogenic differentiation. AT-III-treated macrophage CM promoted chondrocyte proliferation while inhibiting chondrocyte degeneration. In vivo, AT-III treatment alleviated the degree of synovitis, inhibited subchondral bone remodeling and reduced cartilage destruction in the rat OA model. CONCLUSIONS: AT-III attenuates OA by repolarizing macrophages through inactivating TLR4/NF-κB signaling. These data suggest that AT-III may be an effective therapeutic candidate for OA treatment.


Assuntos
NF-kappa B , Osteoartrite , Ratos , Animais , NF-kappa B/metabolismo , Receptor 4 Toll-Like/metabolismo , Sincalida/metabolismo , Sincalida/farmacologia , Sincalida/uso terapêutico , Macrófagos , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo
4.
Appl Biochem Biotechnol ; 196(2): 717-728, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37178251

RESUMO

This study aimed to explore the molecular mechanism of LCN2 regulating aerobic glycolysis on abnormal proliferation of HCC cells. Based on the prediction of GEPIA database, the expression levels of LCN2 in hepatocellular carcinoma tissues were detected by RT-qPCR analysis, western blot, and immunohistochemical staining, respectively. In addition, CCK-8 kit, clone formation, and EdU staining were used to analyze the effect of LCN2 on the proliferation of hepatocellular carcinoma cells. Glucose uptake and lactate production were detected using kits. In addition, western blot was used to detect the expressions of aerobic glycolysis-related proteins. Finally, western blot was used to detect the expressions of phosphorylation of JAK2 and STAT3. We found LCN2 was upregualted in hepatocellular carcinoma tissues. CCK-8 kit, clone formation, and EdU staining results showed that LCN2 could promote the proliferation in hepatocellular carcinoma cells (Huh7 and HCCLM3 cells). Western blot results and kits confirmed that LCN2 significantly promotes aerobic glycolysis in hepatocellular carcinoma cells. Western blot results showed that LCN2 could significantly upregulate the phosphorylation of JAK2 and STAT3. Our results indicated that LCN2 activated the JAK2/STAT3 signaling pathway, promoted aerobic glycolysis, and accelerated malignant proliferation of hepatocellular carcinoma cells.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Glicólise , Janus Quinase 2/metabolismo , Lipocalina-2/metabolismo , Neoplasias Hepáticas/patologia , Transdução de Sinais , Sincalida/metabolismo , Sincalida/farmacologia , Fator de Transcrição STAT3/metabolismo
5.
Int J Toxicol ; 43(2): 134-145, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37859596

RESUMO

Antioxidant 1 copper chaperone (Atox1) may contribute to preventing DDP cochlear damage by regulating copper transport family and cell cycle proteins. A rat model of cochlear damage was developed by placing gelatin sponges treated with DDP in the cochlea. HEI-OC1 cells were treated with 133 µM DDP as a cell model. DDP-induced ototoxicity in rats was confirmed by immunofluorescence (IF) imaging. The damage of DDP to HEI-OC1 cells was assessed by using CCK-8, TUNEL, and flow cytometry. The relationship between Atox1, a member of the copper transport protein family, and the damage to in vivo/vitro models was explored by qRT-PCR, western blot, CCK-8, TUNEL, and flow cytometry. DDP had toxic and other side effects causing cochlear damage and promoted HEI-OC1 cell apoptosis and cell cycle arrest. The over-expression of Atox1 (oe-Atox1) was accomplished by transfecting lentiviral vectors into in vitro/vivo models. We found that oe-Atox1 increased the levels of Atox1, copper transporter 1 (CTR1), and SOD3 in HEI-OC1 cells and decreased the expression levels of ATPase copper transporting α (ATP7A) and ATPase copper transporting ß (ATP7B). In addition, the transfection of oe-Atox1 decreased cell apoptosis rate and the number of G2/M stage cells. Similarly, the expression of myosin VI and phalloidin of cochlea cells in vivo decreased. Atox1 ameliorated DDP-induced damage to HEI-OC1 cells or rats' cochlea by regulating the levels of members of the copper transport family.


Assuntos
Cisplatino , Cobre , Ratos , Animais , Cisplatino/toxicidade , Cobre/toxicidade , Sincalida/farmacologia , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/farmacologia , Cóclea , Ciclo Celular
6.
J Periodontal Res ; 59(1): 84-93, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37814383

RESUMO

BACKGROUND AND OBJECTIVES: The utilization of natural products to enhance the function of periodontal ligament cells (PDLCs) has emerged as a popular area of research. Recent investigations have demonstrated that sappanchalcone (SC) possesses pharmacological properties such as anti-inflammatory and osteoprotective effects. This study aims to explore the impact of SC on the in vivo and in vitro osteogenic differentiation ability of PDLCs. MATERIALS: Cell proliferation was quantified using the CCK-8 assay, while gene expression levels were assessed through qRT-PCR analysis. Osteoblast differentiation capacity was evaluated by employing Alizarin red staining (ARS), alkaline phosphatase (ALP) staining and western blot (WB) analysis. A rat model of periodontitis was established utilizing the tether-wire method. Micro-CT imaging and hematoxylin and eosin (HE) staining were employed to evaluate alveolar bone resorption. Masson's trichrome staining was utilized to observe fiber alignment, whereas immunohistochemistry (IHC) techniques were applied for detecting osteogenic and inflammatory factors. RESULTS: The results from the CCK-8 assay indicate no observed cytotoxicity for concentrations of 1, 5, or 10 nM for SC treatment (p < .05), while qRT-PCR analysis demonstrates a significant decrease in inflammatory factors such as MMP-1 and IL-6 with treatment by SC (p < .05). Additionally, western blotting reveals an increase in protein expression levels of Runx2 and OPN within PDLCs treated with SC compared to control groups (p < .05), which is further supported by ARS and ALP staining indicating an increase in mineralized nodules formation along with elevated ALP content within these cells following treatment with this compound (p < .05). Finally, both HE staining as well as micro-CT imaging suggest potential benefits associated with using this compound including slowing alveolar bone resorption while simultaneously promoting junctional epithelium proliferation. CONCLUSIONS: Our in vitro and in vivo findings suggest that SC can effectively enhance the inflammatory response of PDLCs and promote their osteogenic differentiation ability under inflammatory conditions, indicating its potential as a promising therapeutic agent for improving periodontal inflammation and bone formation.


Assuntos
Reabsorção Óssea , Chalconas , Osteogênese , Ratos , Animais , Sincalida/farmacologia , Diferenciação Celular , Ligamento Periodontal , Células Cultivadas
7.
Adipocyte ; 13(1): 2282566, 2024 12.
Artigo em Inglês | MEDLINE | ID: mdl-37993991

RESUMO

BACKGROUND: Platinum is a commonly used drug for ovarian cancer (OvCa) treatment, but drug resistance limits its clinical application. This study intended to delineate the effects of adipocytes on platinum resistance in OvCa. METHODS: OvCa cells were maintained in the adipocyte-conditioned medium. Cell viability and apoptosis were detected by CCK-8 and flow cytometry, separately. Proliferation and apoptosis-related protein expression were assayed by western blot. The IC50 values of cisplatin and carboplatin were determined using CCK-8. IGF1 secretion and expression were assayed via ELISA and western blot, respectively. A xenograft model was established, and pathological changes were detected by H&E staining. Proliferation and apoptosis-associated protein expression was assessed via IHC. RESULTS: Adipocytes promoted the viability and repressed cell apoptosis in OvCa, as well as enhancing platinum resistance, while the addition of IGF-1 R inhibitor reversed the effects of adipocytes on proliferation, apoptosis, and drug resistance of OvCa cells. Treatment with different concentrations of Ojeok-san (OJS) inhibited the adipocyte-induced platinum resistance in OvCa cells by suppressing IGF1. The combined treatment of OJS and cisplatin significantly inhibited tumour growth in vivo with good mouse tolerance. CONCLUSION: In summary, OJS inhibited OvCa proliferation and platinum resistance by suppressing adipocyte paracrine IGF1 secretion.


Assuntos
Cisplatino , Neoplasias Ovarianas , Humanos , Feminino , Animais , Camundongos , Cisplatino/farmacologia , Cisplatino/metabolismo , Cisplatino/uso terapêutico , Fator de Crescimento Insulin-Like I/metabolismo , Sincalida/metabolismo , Sincalida/farmacologia , Sincalida/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Adipócitos/metabolismo
8.
J Ethnopharmacol ; 322: 117577, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38104877

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Modified Biejia Jianwan (M-BJJW), a Traditional Chinese Medicine (TCM) decoction, has exhibited great potential in treating hepatocellular carcinoma (HCC). However, its underlying functional mechanism still remains unknown. AIM OF THE STUDY: The study aimed to explore the anti-hepatocarcinogenic effects of M-BJJW, specifically its influence on PD-L1-mediated immune evasion in hypoxic conditions, and elucidate the related molecular mechanisms in HCC. MATERIALS AND METHODS: To investigate the therapeutic efficacy and mechanisms underlying M-BJJW's effects on HCC, we employed a diethylnitrosamine (DEN)-induced rat model maintained for 120 days. Following model establishment, flow cytometry was utilized to assess the distribution of immune cell populations in peripheral blood, spleens, and tumor tissues after M-BJJW administration. Simultaneously, enzyme-linked immunosorbent assays (ELISA) were conducted to analyze cytokine profiles in serum samples. Immunohistochemistry was employed to determine the expression levels of crucial proteins within tumor tissues. Furthermore, HCC cells exposed to CoCl2 underwent Western blot analysis to validate the expression levels of HIF-1α, PD-L1, STAT3, and nuclear factor kappa B (NF-κB) p65. The modulatory effects of STAT3 and NF-κB p65 were investigated using specific inhibitors and activators in wild-type cell lines. High-performance liquid chromatography coupled with mass spectrometry (HPLC/MS) was utilized to identify the chemical constituents present in M-BJJW-medicated serum. The immunomodulatory properties and the anti-tumor activities of M-BJJW were evaluated by co-culturing with peripheral blood mononuclear cells (PBMC) and the CCK-8 assay. Additionally, we assessed M-BJJW's impact on hypoxia-induced alterations in HCC cell lines using immunofluorescence and Western blot assessments. RESULTS: M-BJJW exhibited substantial therapeutic advantages by effectively alleviating pathological deterioration within the HCC microenvironment. In the DEN-induced rat model, M-BJJW administration notably reduced tumor growth. Flow cytometry analyses revealed an increased proportion of Cytotoxic T lymphocytes (CTLs) accompanied by a simultaneous decrease in regulatory T cells (Tregs). ELISA data supported a marked decrease in pro-inflammatory cytokines, including interleukin-6 (IL-6), interleukin-10 (IL-10), and tumor necrosis factor α (TNF-α). Immunohistochemistry confirmed the suppressive effect of M-BJJW on the expression of HIF-1α and PD-L1. Notably, western blotting unveiled the role of HIF-1α in regulating PD-L1 expression via the STAT3 and NF-κB signaling pathways in HCC cell lines, which was validated using activators and inhibitors of STAT3 and NF-κB. The CCK-8 assay and co-culture techniques demonstrated the anti-tumor activity of M-BJJW. Immunofluorescence and western blotting further confirmed that M-BJJW-containing serum dose-dependently inhibited HIF-1α, PD-L1, p-STAT3, and p-p65 in hypoxic HCC cell lines. CONCLUSIONS: M-BJJW demonstrates significant therapeutic potential against HCC by influencing the hypoxic microenvironment, thereby regulating the immunosuppressive milieu. Specifically, M-BJJW modulates the HIF-1α/STAT3/NF-κB signaling pathway, leading to reduced PD-L1 expression and an elevated ratio of cytotoxic T lymphocytes (CTLs), while concurrently decreasing T regulatory cells (Tregs) and immunosuppressive factors. These synergistic effects aid in countering PD-L1-mediated immune evasion, presenting compelling pharmacological evidence supporting the clinical application of M-BJJW as a therapeutic approach for HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Ratos , Animais , NF-kappa B/metabolismo , Carcinoma Hepatocelular/metabolismo , Leucócitos Mononucleares/metabolismo , Neoplasias Hepáticas/patologia , Antígeno B7-H1/metabolismo , Evasão da Resposta Imune , Sincalida/farmacologia , Transdução de Sinais , Microambiente Tumoral
9.
J Orthop Surg Res ; 18(1): 910, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38031136

RESUMO

OBJECTIVE: Osteosarcoma is a rare primary malignant tumor of the bone characterized by poor survival rates, owing to its unclear pathogenesis. Rho GTPase-activating protein 44 (ARHGAP44), which belongs to the Rho GTPase-activating protein family, has promising applications in the targeted therapy of tumors. Therefore, this study aimed to investigate the biological function of ARHGAP44 in osteosarcoma and its possible application as a therapeutic target. METHODS: The expression level of ARHGAP44 in osteosarcoma and its relationship with tumor prognosis were detected using Gene Expression Omnibus database analysis and immunohistochemical staining of clinical specimens. The cell model of ARHGAP44 knockdown was constructed, and the effects of this gene on the malignant biological behavior of osteosarcoma cells were investigated using CCK-8, clone formation, transwell invasion, wound healing, and flow cytometry assays. Western blotting was performed to detect the expression of ARHGAP44, p53, C-myc, and Cyclin D1 in osteosarcoma. RESULTS: Biogenic analysis showed that ARHGAP44 was highly expressed in osteosarcoma. This result was associated with poor tumor prognosis and negatively correlated with the expression of the tumor suppressor gene p53. Immunohistochemistry and western blotting revealed significantly upregulated expression of ARHGAP44 in osteosarcoma tissues. Additionally, Kaplan-Meier analysis of clinical specimens suggested that ARHGAP44 was negatively correlated with tumor prognosis. CCK-8, clone formation, transwell invasion, wound healing, and flow cytometry assays showed that downregulation of ARHGAP44 expression significantly reduced the malignant biological behavior of osteosarcoma cells. Furthermore, western blotting showed that the expression level of p53 in osteosarcoma cells was significantly increased after the downregulation of ARHGAP44 expression, whereas the expression of C-myc and Cyclin D1 was significantly decreased compared with that in the control group. CONCLUSION: ARHGAP44 was highly expressed in osteosarcoma and was negatively correlated with its prognosis. The downregulation of ARHGAP44 expression reduced the malignant biological behavior of osteosarcoma cells. These findings suggest that the downregulation of ARHGAP44 expression inhibits the malignant progression of osteosarcoma by regulating the p53/C-myc/Cyclin D1 pathway, demonstrating the potential of ARHGAP44 as a therapeutic target for osteosarcoma.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Humanos , Apoptose , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Ciclina D1/genética , Ciclina D1/metabolismo , Regulação Neoplásica da Expressão Gênica , Osteossarcoma/patologia , Sincalida/genética , Sincalida/metabolismo , Sincalida/farmacologia , Proteína Supressora de Tumor p53/genética
10.
Zhongguo Zhong Yao Za Zhi ; 48(17): 4702-4710, 2023 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-37802809

RESUMO

This study aimed to investigate the effect and molecular mechanism of sinomenine on proliferation, apoptosis, metastasis, and combination with inhibitors in human hepatocellular carcinoma HepG2 cells and SK-HEP-1 cells. The effect of sinomenine on the growth ability of HepG2 and SK-HEP-1 cells were investigated by CCK-8 assay, colony formation assay, and BeyoClick~(TM) EdU-488 staining. The effect of sinomenine on DNA damage was detected by immunofluorescence assay, and the effect of sinomenine on apoptosis of human hepatocellular carcinoma cells was clarified by Hoechst 33258 staining and CellEvent~(TM) Cystein-3/7Green ReadyProbes~(TM) reagent assay. Cell invasion assay and 3D tumor cell spheroid invasion assay were performed to investigate the effect of sinomenine on the invasion ability of human hepatocellular carcinoma cells in vitro. The effect of sinomenine on the regulation of protein expression related to the protein kinase B(Akt)/mammalian target of rapamycin(mTOR)/signal transducer and activator of transcription 3(STAT3) signaling pathway in HepG2 and SK-HEP-1 cells was examined by Western blot. Molecular docking was used to evaluate the strength of affinity of sinomenine to the target cysteinyl aspartate specific proteinase-3(caspase-3) and STAT3, and combined with CCK-8 assay to detect the changes in cell viability after combination with STAT3 inhibitor JSI-124 in combination with CCK-8 assay. The results showed that sinomenine could significantly reduce the cell viability of human hepatocellular carcinoma cells in a concentration-and time-dependent manner, significantly inhibit the clonogenic ability of human hepatocellular carcinoma cells, and weaken the invasive ability of human hepatocellular carcinoma cells in vitro. In addition, sinomenine could up-regulate the cleaved level of poly ADP-ribose polymerase(PARP), a marker of apoptosis, and down-regulate the protein levels of p-Akt, p-mTOR, and p-STAT3 in human hepatocellular carcinoma cells. Molecular docking results showed that sinomenine had good affinity with the targets caspase-3 and STAT3, and the sensitivity of sinomenine to hepatocellular carcinoma cells was diminished after STAT3 was inhibited. Therefore, sinomenine can inhibit the proliferation and invasion of human hepatocellular carcinoma cells and induce apoptosis, and the mechanism may be attributed to the activation of caspase-3 signaling and inhibition of the Akt/mTOR/STAT3 pathway. This study can provide a new reference for the in-depth research and clinical application of sinomenine and is of great significance to further promote the scientific development and utilization of sinomenine.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Caspase 3/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Simulação de Acoplamento Molecular , Sincalida/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Células Hep G2 , Serina-Treonina Quinases TOR/metabolismo , Apoptose
11.
Pathol Res Pract ; 251: 154886, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37844486

RESUMO

BACKGROUND: Runt-related transcription factor 1 (RUNX1), also called acute myeloid leukaemia 1, is a member of RUNX family of transcription factors. This family is composed of evolutionarily conserved transcription factors that function as critical lineage determinants in various tissues, however its function in cancer development and clinical significance in RCC are still unknown. METHODS: We used paraffin-embedded tumor tissues from 100 patients and fresh-harvested and paired adjacent normal renal tissues from 15 RCC patients who underwent primary surgical resection in Xijing Hospital between 2018 and 2022. The expression level of RUNX1 was evaluated by immunohistochemistry and Western Blot. RUNX1 promoted tumor cells proliferation, migration and invasion were verified by CCK-8, wound-healing and transwell assays. Finally, we constructed a xenografts model of the 786-O cell lines to observe the effect of RUNX1 on tumorigenesis in vivo. RESULTS: TCGA database showed higher RUNX1 expression levels in KIRC (kidney renal clear cell carcinoma). In overall survival analysis, RCC patients with higher RUNX1 expression level would have a shorter survival period than those with lower expression. Similarly, immunohistochemical results of our cohort also showed that RUNX1 was over-expression in cancer tissues than in corresponding non-cancer tissues. We also proved this result at protein level by western-blot. Meanwhile, prognostic and OS analyses of our cohort showed that the RUNX1 expression level was an individual prognostic factor in RCC patients. CCK-8, wound-healing and transwell assays proved that the overexpression of RUNX1 in Caki-1 cells promoted the proliferation, migration and invasion of the cells. Knocking down RUNX1 in 786-O cells inhibited the proliferation, migration and invasion of cells. The experimental results of xenografts model in nude mice showed that the knockdown of RUNX1 in 786-O cells slowed down the growth of tumor. CONCLUSION: RUNX1 is a poor prognostic factor of clear cell renal carcinoma, which may provide a novel therapeutic target for ccRCC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Animais , Camundongos , Humanos , Carcinoma de Células Renais/patologia , Neoplasias Renais/patologia , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Camundongos Nus , Sincalida/metabolismo , Sincalida/farmacologia , Prognóstico , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica
12.
Neuropharmacology ; 241: 109739, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37820935

RESUMO

Cholecystokinin (CCK) is a peptide that has been implicated in pain modulation. Acid sensitive ion channels (ASICs) also play an important role in pain associated with tissue acidification. However, it is still unclear whether there is an interaction between CCK signaling and ASICs during pain process. Herein, we report that a functional link between them in rat dorsal root ganglion (DRG) neurons. Pretreatment with CCK-8 concentration-dependently increased acid-evoked ASIC currents. CCK-8 increased the maximum response of ASICs to acid, but did not changed their acid sensitivity. Enhancement of ASIC currents by CCK-8 was mediated by the stimulation of CCK2 receptor (CCK2R), rather than CCK1R. The enhancement of ASIC currents by CCK-8 was prevented by application of either G-protein inhibitor GDP-ß-S or protein kinase C (PKC) inhibitor GF109203×, but not by protein kinase A (PKA) inhibitor H-89 or JNK inhibitor SP600125. Moreover, CCK-8 increased the number of action potentials triggered by acid stimuli by activating CCK2R. Finally, CCK-8 dose-dependently exacerbated acid-induced nociceptive behavior in rats through local CCK2R. Together, these results indicated that CCK-8/CCK2R activation enhanced ASIC-mediated electrophysiological activity in DRG neurons and nociception in rats. The enhancement effect depended on G-proteins and intracellular PKC signaling rather than PKA and JNK signaling pathway. These findings provided that CCK-8/CCK2R is an important therapeutic target for ASIC-mediated pain.


Assuntos
Canais Iônicos Sensíveis a Ácido , Sincalida , Ratos , Animais , Ratos Sprague-Dawley , Sincalida/farmacologia , Sincalida/metabolismo , Canais Iônicos Sensíveis a Ácido/metabolismo , Células Receptoras Sensoriais , Dor/metabolismo , Gânglios Espinais/metabolismo
13.
J Mol Histol ; 54(6): 645-654, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37740843

RESUMO

Prostate cancer (PC) is the most common malignancy in male reproductive system. Sennoside A (SA) is an anthraquinone active ingredient extracted from Rheum officinale Baill., which exerts anti-tumor activity on different tumors. In the present study, the toxicity of SA on PC3 and DU 145 cells was detected via CCK-8. The effects of SA on growth, apoptosis, and autophagy were determined through CCK-8, Hoechst stain, flow cytometry, western blot, and immunofluorescence examinations. An in vivo experiment was performed in xenografted mice with intraperitoneal introduction of 10 mg/kg SA and validated via TUNEL, immunohistochemistry and western blot. The results showed that SA inhibited the cell viability with a IC50 value of 52.36 and 67.48 µM in DU 145 and PC3 cells respectively, and enhanced the apoptosis of PC3 and DU 145 cells. Additionally, SA elevated the relative LC3B expression, and the relative protein expression of LC3II/LC3I and Beclin-1, but diminished the P62 protein expression. The relative protein level of p-PI3K/PI3K, p-AKT/AKT and p-mTOR/mTOR was reduced with SA treatment, which was verified by the 740 Y-P application. The 740 Y-P treatments also restored the SA-induced the cell viability, apoptosis rate and relative LC3B expression. Meanwhile, SA inhibited the growth of PC cell and the relative protein level of PI3K/AKT/mTOR axis in vivo. Taken together, SA regulated the proliferation, apoptosis and autophagy via inactivating the PI3K/AKT/mTOR axis in PC.


Assuntos
Neoplasias da Próstata , Proteínas Proto-Oncogênicas c-akt , Humanos , Masculino , Animais , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Fosfatidilinositol 3-Quinases/metabolismo , Senosídeos/farmacologia , Sincalida/farmacologia , Linhagem Celular Tumoral , Serina-Treonina Quinases TOR/metabolismo , Apoptose , Autofagia , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Proliferação de Células
14.
Phytomedicine ; 118: 154924, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37393829

RESUMO

BACKGROUND: Triple-negative breast cancer (TNBC) is a heterogeneous carcinoma characterized by the most aggressive phenotype among all breast cancer subtypes. However, therapeutic options for TNBC patients have limited clinical efficacy due to lack of specific target and efficient targeted therapeutics. AIM: To investigate the biological characteristics of a novel estrogen receptor (ER)-α splice variant ER-α30 in breast cancer cells, and its possible role in the anticancer effects of calycosin, a typical phytoestrogen derived from the herbal plant Astragalus membranaceus, against TNBC. This may also provide a better understanding of the inhibitory activity of calycosin on TNBC progression. METHODS: Breast cancer tissues and para-cancer tissues were collected and analyzed for the expression levels of ER-α30 using immunohistochemistry (IHC), and its expression in two TNBC cell lines (MDA-MB-231 and BT-549) was detected by western blot and qRT-PCR assays. Then the alteration of cell viability, apoptosis, migration, invasion and epithelial-mesenchymal transition (EMT) in response to overexpression or knockdown of ER-α30 was separately determined by CCK-8, Hoechst 33258, wound healing, transwell and western blot assays in two TNBC cell lines. Next, the anticancer effects of calycosin on MDA-MB-231 cells were evaluated through CCK-8, colony formation, flow cytometry, Hoechst 33258 and western blot assays, along with the role of ER-α30 in these effects and the possible downstream targets of ER-α30. In addition, the in vivo experiments were carried out using MDA-MB-231 xenograft model intraperitoneally treated with calycosin. The volume and weight of xenograft tumor were measured to evaluate the in vivo anticancer activities of calycosin, while the corresponding changes of ER-α30 expression in tumor tissues were detected by IHC. RESULTS: It was demonstrated that the novel ER-α splice variant ER-α30 was primarily distributed in the nucleus of TNBC cells. Compared with normal breast tissues, ER-α30 expression was found in significantly higher levels in breast cancer tissues of ER- and progesterone receptor (PR)-negative subtype, so did in TNBC cell lines (MDA-MB-231 and BT-549) when compared to normal breast cell line MCF10A. Moreover, ER-α30 overexpression strikingly enhanced cell viability, migration, invasion and EMT progression and reduced apoptosis in TNBC cells, whereas shRNA-mediated knockdown of ER-α30 revealed the opposite results. Notably, calycosin suppressed the expression of ER-α30 in a dose-dependent manner, accompanied with the inhibition of TNBC growth and metastasis. A similar finding was observed for the xenografts generated from MDA-MB-231 cells. The treatment with calycosin suppressed the tumor growth and decreased ER-α30 expression in tumor tissues. Furthermore, this inhibition by calycosin was more pronounced in ER-α30 knockdown cells. Meanwhile, we found a positive relationship between ER-α30 and the activity of PI3K and AKT, which could also be inactivated by calycosin treatment. CONCLUSION: For the first time, it is demonstrated that the novel estrogen receptor-α splice variant ER-α30 could function as pro-tumorigenic factor in the context of TNBC by participating in cell proliferation, apoptosis, invasion and metastasis, thus it may serve as a potential therapeutic target for TNBC therapy. Calycosin could reduce the activation of ER-α30-mediated PI3K/AKT pathway, thereby inhibited TNBC development and progression, suggesting that calycosin may be a potential therapeutic option for TNBC.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Estrogênio/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Regulação para Baixo , Bisbenzimidazol/farmacologia , Sincalida/genética , Sincalida/metabolismo , Sincalida/farmacologia , Linhagem Celular Tumoral , Transdução de Sinais , Proliferação de Células , Movimento Celular
15.
Gen Comp Endocrinol ; 342: 114352, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37517599

RESUMO

In a fasting gastrointestinal tract, a characteristic cyclical rhythmic migrating motor complex (MMC) occur that comprises of three phases: I, II, and III. Among these, phase III contractions propagate from the stomach to the lower intestine in mammals, including humans, dogs, and Suncus murinus (suncus). Apart from the phase III of MMC propagating from the stomach, during the gastric phase II, small intestine-originated strong contractions propagate to the lower small intestine; however, the mechanism of contractions originating in the small intestine has not been clarified. In this study, we aimed to elucidate the role of cholecystokinin (CCK) in small intestinal motility. Administration of sulfated CCK-8 in phase I induced phase II-like contractions in the small intestine, which lasted for approximately 10-20 min and then returned to the baseline, while no change was observed in the stomach. Contractions of small intestine induced by CCK-8 were abolished by lorglumide, a CCK1 receptor antagonist. Gastrin, a ligand for the CCK2 receptor, evoked strong contractions in the stomach, but did not induce contractions in the small intestine. To examine the effect of endogenous CCK on contractions of small intestinal origin, lorglumide was administered during phase II. However, there was no change in the duodenal motility pattern, and strong contractions of small intestinal origin were not abolished by treatment with lorglumide. These results suggest that exogenous CCK stimulates contractions of small intestine via CCK1 receptors, whereas endogenous CCK is not involved in the strong contractions of small intestinal origin.


Assuntos
Motilidade Gastrointestinal , Sincalida , Humanos , Animais , Cães , Sincalida/farmacologia , Complexo Mioelétrico Migratório/fisiologia , Colecistocinina/farmacologia , Estômago , Musaranhos , Receptores da Colecistocinina
16.
BMC Complement Med Ther ; 23(1): 212, 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37370057

RESUMO

BACKGROUND: Cervical cancer (CC) is a common gynecological malignancy with high morbidity worldwide. Butyrate, a short-chain fatty acid produced by intestinal flora, has been reported to inhibit cervical carcinogenesis. This study aimed to investigate the pro-apoptotic effects of butyrate on CC and the underlying mechanisms. METHODS: Human HeLa and Ca Ski cells were used in this study. Cell proliferation, cell migration and invasion were detected by CCK-8 and EdU staining, transwell and wound healing assay, respectively. Cell cycle, mitochondrial membrane potential and apoptosis were evaluated by flow cytometry. Western blot and RT-qPCR were carried out to examine the related genes and proteins to the mitochondrial complex Ι and apoptosis. Metabolite changes were analyzed by energy metabolomics and assay kits. The association between G protein-coupled receptor 41, 43, 109a and CC prognosis was analyzed using data from The Cancer Genome Atlas (TCGA). RESULTS: CCK-8 results showed significant inhibition of CC cell proliferation induced by butyrate treatment, which was confirmed by EdU staining and cell cycle detection. Data from the transwell and wound healing assay revealed that CC cell migration was dramatically reduced following butyrate treatment. Additionally, invasiveness was also decreased by butyrate. Western blot analysis showed that cleaved Caspase 3 and cleaved PARP, the enforcers of apoptosis, were increased by butyrate treatment. The results of Annexin V/PI staining and TUNEL also showed an increase in butyrate-induced apoptotic cells. Expression of Cytochrome C (Cytc), Caspase 9, Bax, but not Caspase 12 or 8, were up-regulated under butyrate exposure. Mechanistically, the decrease in mitochondrial NADH and NAD + levels after treatment with butyrate was observed by energy metabolomics and the NAD+/NADH Assay Kit, similar to the effects of the complex Ι inhibitor rotenone. Western blot results also demonstrated that the constituent proteins of mitochondrial complex Ι were reduced by butyrate. Furthermore, mitochondria-dependent apoptosis has been shown to be initiated by inhibition of the complex Ι. CONCLUSION: Collectively, our results revealed that butyrate inhibited the proliferation, migration and invasion of CC cells, and induced mitochondrial-dependent apoptosis by inhibiting mitochondrial complex Ι.


Assuntos
Neoplasias do Colo do Útero , Feminino , Humanos , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/patologia , Butiratos/farmacologia , NAD/metabolismo , Sincalida/metabolismo , Sincalida/farmacologia , Transdução de Sinais , Apoptose , Mitocôndrias
17.
J Ethnopharmacol ; 304: 116028, 2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-36529250

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Koumine, an indole alkaloid extracted from Gelsemium elegans Benth, exerts anti-inflammation and antioxidant activities. However, the effects of koumine on intestinal injury induced by H2O2 and its potential molecular mechanisms need larger studies. AIM OF THE STUDY: We established an IPEC-J2 cell damage model induced by H2O2 to explore the protective mechanism of koumine on intestinal injury. MATERIALS AND METHODS: In the experiment, cell damage models were made with hydrogen peroxide. To assess the protective effect of koumine on H2O2-induced IPEC-J2 cell injury, CCK-8, the release of LDH and ROS, transmission electron microscopy and Annexin V-FITC/PI were employed. Western Blot and Quantitative Real-time PCR were used to determine the potential alleviated mechanism of koumine on H2O2-trigged IPEC-J2 cell damage. RESULTS: The results of CCK-8 and LDH implied that koumine has a mitigative effect on H2O2-induced cell damage via upregulating cell viability and suppressing cell membrane fragmentation. Simultaneously, koumine notably inhibited the level of pro-inflammatory factors (IL-1ß, IL-6, IL-8, TNF-α and TGF-ß), the over-production of ROS along with decreasing the injury of mitochondrion, endoplasmic reticulum and lysosome induced by H2O2. Moreover, koumine dramatically attenuated H2O2-triggered IPEC-J2 cell apoptosis and autophagy. Subsequently, Western blot analysis identified NF-ΚB, PI3K and ERS as possible pathway responsible for the protective effect of koumine on H2O2-stimulated IPEC-J2 cell inflammation. CONCLUSIONS: This in vitro experimental study suggests that koumine suppresses the H2O2-induced activation of inflammatory pathways, oxidative injury, ER stress, apoptosis and autophagy, which provide a rationale for therapeutically use in major intestinal diseases.


Assuntos
Peróxido de Hidrogênio , NF-kappa B , NF-kappa B/metabolismo , Peróxido de Hidrogênio/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Proteínas Proto-Oncogênicas c-akt , Fosfatidilinositol 3-Quinases , Sincalida/farmacologia , Linhagem Celular , Alcaloides Indólicos/farmacologia , Serina-Treonina Quinases TOR , Apoptose
18.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-981348

RESUMO

To investigate the protective effect and the potential mechanism of leonurine(Leo) against erastin-induced ferroptosis in human renal tubular epithelial cells(HK-2 cells), an in vitro erastin-induced ferroptosis model was constructed to detect the cell viability as well as the expressions of ferroptosis-related indexes and signaling pathway-related proteins. HK-2 cells were cultured in vitro, and the effects of Leo on the viability of HK-2 cells at 10, 20, 40, 60, 80 and 100 μmol·L~(-1) were examined by CCK-8 assay to determine the safe dose range of Leo administration. A ferroptosis cell model was induced by erastin, a common ferroptosis inducer, and the appropriate concentrations were screened. CCK-8 assay was used to detect the effects of Leo(20, 40, 80 μmol·L~(-1)) and positive drug ferrostatin-1(Fer-1, 1, 2 μmol·L~(-1)) on the viability of ferroptosis model cells, and the changes of cell morphology were observed by phase contrast microscopy. Then, the optimal concentration of Leo was obtained by Western blot for nuclear factor erythroid 2-related factor 2(Nrf2) activation, and transmission electron microscope was further used to detect the characteristic microscopic morphological changes during ferroptosis. Flow cytometry was performed to detect reactive oxygen species(ROS), and the level of glutathione(GSH) was measured using a GSH assay kit. The expressions of glutathione peroxidase 4(GPX4), p62, and heme oxygenase 1(HO-1) in each group were quantified by Western blot. RESULTS:: showed that Leo had no side effects on the viability of normal HK-2 cells in the concentration range of 10-100 μmol·L~(-1). The viability of HK-2 cells decreased as the concentration of erastin increased, and 5 μmol·L~(-1) erastin significantly induced ferroptosis in the cells. Compared with the model group, Leo dose-dependently increased cell via-bility and improved cell morphology, and 80 μmol·L~(-1) Leo promoted the translocation of Nrf2 from the cytoplasm to the nucleus. Further studies revealed that Leo remarkably alleviated the characteristic microstructural damage of ferroptosis cells caused by erastin, inhibited the release of intracellular ROS, elevated GSH and GPX4, promoted the nuclear translocation of Nrf2, and significantly upregulated the expression of p62 and HO-1 proteins. In conclusion, Leo exerted a protective effect on erastin-induced ferroptosis in HK-2 cells, which might be associated with its anti-oxidative stress by activating p62/Nrf2/HO-1 signaling pathway.


Assuntos
Humanos , Ferroptose , Espécies Reativas de Oxigênio/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Sincalida/farmacologia , Transdução de Sinais , Células Epiteliais/metabolismo , Glutationa
19.
Cell Commun Signal ; 20(1): 199, 2022 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-36575478

RESUMO

BACKGROUND: The treatment of chronic myeloid leukemia (CML) is facing the dilemma of tyrosine kinase inhibitors (TKIs) resistance and disease recurrence. The dysfunctional DNA damage repair mechanism plays an essential role not only in the initiation and progression of hematological malignancies but also links to the development of TKI resistance. Deciphering the abnormally regulated DNA damage repair and proteins involved brings new insights into the therapy of leukemias. As a G2/M phase checkpoint kinase and a DNA damage repair checkpoint kinase engaged in the DNA damage response (DDR), along with an oncogenic driver present in various cancers, the particular involvement of Wee1 in DNA damage is far from clear. Deciphering its function and targeting it via modulating DNA repair pathways is important for improving our understanding of cancer treatment. METHODS: Wee1 expression was assessed in cell lines using RT-qPCR and western blot, and Wee1 knockdown efficacy was validated using RT-qPCR, western blot, and immunofluorescence. Wee1 function was investigated by CCK-8, colony formation, and flow cytometry assay in vitro. Wee1 role in DNA repair and its interactions with other proteins were then studied using western blot, immunofluorescence, and double plasmid-repair studies. Finally, the CCK-8 and flow cytometry assay was utilized to investigate Wee1 and imatinib's synergistic effect, and a CML mouse model was constructed to study Wee1's role in carcinogenesis in vivo. RESULTS: Wee1 was reported to respond quickly to DDR in an ATM-γH2AX-MDC1-dependent way upon DNA double-strand breaks (DSBs) occurrence, and it regulated homologous recombination by stimulating the recruitment of critical proteins RAD51/BRCA1 upon DSB sites. Wee1 was also revealed to be abnormally upregulated in CML cells. Further suppression of Wee1 not only causes cell cycle arrest and inhibits the proliferation of cancer cells but also enhances CML cell sensitivity to Imatinib in vitro and in vivo, possibly through an excessive accumulation of overall DSBs. CONCLUSION: Wee1 is extensively involved in the DRR signaling and DSB repair pathway. Inhibiting abnormally elevated Wee1 benefits CML therapy in both IM-resistant and IM-sensitive cells. Our data demonstrated that Wee1 participated in promoting cell proliferation and imatinib resistance in chronic myeloid leukemia via regulating DNA damage repair dependent on ATM-γH2AX-MDC1. In the fight against CML, Wee1's dysregulation in the DNA damage repair mechanism of CML pathogenesis makes it a viable therapeutic target in clinical applications.


Assuntos
Leucemia Mielogênica Crônica BCR-ABL Positiva , Sincalida , Animais , Camundongos , Proliferação de Células , Dano ao DNA , Reparo do DNA , Resistencia a Medicamentos Antineoplásicos , Mesilato de Imatinib/farmacologia , Mesilato de Imatinib/uso terapêutico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Sincalida/farmacologia , Humanos
20.
Oxid Med Cell Longev ; 2022: 3082969, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36275892

RESUMO

Aim: Thin endometrium remains a severe clinical challenge with no effective therapy to date. We aimed at exploring the role and molecular mechanism of human umbilical cord mesenchymal stem cell- (hucMSC-) derived exosomes (hucMSC-Ex) in repairing hypoxic injury of endometrial epithelial cells (EECs). Methods: Exosomes were harvested from the conditioned medium of hucMSC and characterized using western blot, transmission electron microscopy (TEM), flow cytometry, and nanoparticle tracking analysis (NTA). EECs were subjected to hypoxic conditions before cocultured with hucMSC-Ex. Cell viability, apoptosis, and migration were determined with CCK-8, flow cytometry, and wound healing assay, respectively. Apoptosis/EMT-related proteins were detected by western blot. The miRNA profiling was determined by RNA sequencing. The expression of miR-663a and CDKN2A was measured by qRT-PCR. MiR-663a in EECs was overexpressed by transfecting with miR-663a mimics. Results: Mesenchymal stem cells (MSCs) markers CD73, CD90, and CD106 were positively expressed in hucMSCs. Exosome isolated from hucMSC expressed CD63 and TSG101, and were 100-150 nm in diameter. HucMSC-Ex promoted cell proliferation inhibited by hypoxia. And hucMSC-Ex also inhibited hypoxia-induced apoptosis, migration, and EMT of EECs by upregulating the expression of Bcl-2 and E-cadherin and downregulating Bax and N-cadherin levels. Further, bioinformatics research found that hucMSC-Ex coculture can significantly upregulate the expression of miR-663a and decrease the expression of CDKN2A in hypoxia-induced EECs. Furthermore, miR-663a overexpression inhibited CDKN2A expression and increased the expression of Bcl-2 and E-cadherin in hypoxia-induced EECs. Conclusions: HucMSC-Ex promoted cell proliferation, inhibited cell apoptosis, migration, and EMT in hypoxia-induced EECs, thereby alleviating hypoxia-induced EECs injury, which may be related to its regulation of miR-663a/CDKN2A expression. Our study indicated that hucMSC-Ex might benefit for repairing thin endometrium.


Assuntos
Exossomos , Células-Tronco Mesenquimais , MicroRNAs , Feminino , Humanos , Exossomos/metabolismo , Meios de Cultivo Condicionados/farmacologia , Sincalida/metabolismo , Sincalida/farmacologia , Proteína X Associada a bcl-2/metabolismo , Células-Tronco Mesenquimais/metabolismo , Cordão Umbilical , Endométrio/metabolismo , Células Epiteliais/metabolismo , Hipóxia/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Caderinas/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...